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Abstract

In many applications, point set surfaces are acquired by 3D scanners.
During this acquisition process, noise and outliers are inevitable. For a
high fidelity surface reconstruction from a noisy point set, a feature pre-
serving point set denoising operation has to be performed to remove noise
and outliers from the input point set. To suppress these undesired com-
ponents while preserving features, we introduce an anisotropic point set
denoising algorithm in the normal voting tensor framework. The proposed
method consists of three different stages that are iteratively applied to the
input: in the first stage, noisy vertex normals, are initially computed using
principal component analysis, are processed using a vertex-based normal
voting tensor and binary eigenvalues optimization. In the second stage,
feature points are categorized into corners, edges, and surface patches
using a weighted covariance matrix, which is computed based on the pro-
cessed vertex normals. In the last stage, vertex positions are updated
according to the processed vertex normals using restricted quadratic er-
ror metrics. For the vertex updates, we add different constraints to the
quadratic error metric based on feature (edges and corners) and non-
feature (planar) vertices. Finally, we show our method to be robust and
comparable to state-of-the-art methods in several experiments.
Keywords: Point Set Denoising, Normal Voting Tensor, Binary Eigenval-
ues Optimization, Quadratic Error Metric

1 Introduction 1

Point sets arise naturally in almost all kinds of three-dimensional acquisition 2

processes, like 3D scanning. As early as 1985, they have been recognized as fun- 3

damental shape representations in computer graphics, [Levoy and Whitted(1985)]. 4

Thus, they have manifold applications e.g. in face recognition ([Boehnen and Flynn(2005)]),5

traffic accident 6
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analysis ([Buck et al.(2007)Buck, Naether, Braun, Bolliger, Friederich, Jackowski et al.]),1

or archeology ([Levoy et al.(2000)Levoy, Pulli, Curless, Rusinkiewicz, Koller, Pereira et al.]).2

However, during the acquisition process, due to mechanical limitations and3

surrounding conditions, noise and outliers are inevitably added to the point set.4

These artifacts have to be removed in a post-processing step to obtain a cleaned5

point set, which can be used in further steps like surface reconstruction, com-6

puter aided design (CAD), or 3D printing. There exists a variety of denoising7

methods focused on removing outliers and noise from the input point set to8

create a high fidelity output. These methods do not only aim at removing the9

undesired components, but also try to preserve sharp features of the geometry.10

High frequency components like corners or edges should be preserved and not11

be smoothed out. This is a challenging task as both features and noise are high12

frequency components and thus ambiguous in their nature.13

Most state-of-the-art denoising methods are designed to work on triangle14

meshes. Compared to this setup, working on point sets and preserving sharp15

features is more difficult as explicit connectivity information is not present.16

Also, we assume the input to be given without any normals. However, as point17

sets take up less storage space and as the surface reconstruction is easier on a18

noise-free point set, we aim for an intrinsic smoothing method to work directly19

on the noisy point set input.20

Our method is focused on the preservation of sharp features while removing21

noise and outliers from an input point set. The proposed algorithm follows an it-22

erative three-step point set denoising scheme. (1) Noisy vertex normals process-23

ing using a vertex-based normal voting tensor (NVT) and binary eigenvalues op-24

timization (BEO) similar to [Yadav et al.(2017)Yadav, Reitebuch and Polthier].25

(2) Feature points detection using an anisotropic covariance matrix. For the26

update of vertex positions, we use (3) a variation of the quadratic error norm27

adjusted to different kinds of feature points. Steps (1) to (3) are iteratively28

applied until a satisfactory output has been generated.29

1.1 Related Work30

1.1.1 Point-based Methods31

In general, point sets appear as natural output of 3D scan devices. The increase32

in computational costs while processing polygonal meshes with growing size is33

partly responsible that points got recognized as primitives for surface represen-34

tation, cf. [Amenta and Kil(2004)]. One major drawback in this approach is35

the absence of connectivity information, which sets the task to declare surface36

normals. Here, [Amenta and Kil(2004)] especially proposes a definition utilizing37

surfels, which are points equipped with normals. Usually point clouds do not38

carry normals, so we have to rely on methods which determine these robustly and39

with high quality. The authors Mitra and Nguyen [Mitra and Nguyen(2003)]40

suggest a calculation of point set normals and an analysis under consideration41

of density, neighborhood sizes, and the presence of noise.42

We are interested in point set denoising coupled with feature preservation.43
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There are several works approaching these two properties directly. A first one 1

was published by Fleishman et al. [Fleishman et al.(2003)Fleishman, Drori and Cohen-Or]2

– serving as a representative despite the fact that it deals with meshes instead of 3

point clouds. As it does not use the mesh information, so it can be transferred to 4

the point set setting. They use a bilateral filtering of points in normal direction 5

in local neighborhoods. Another one is the anisotropic smoothing of point sets 6

([Lange and Polthier(2005)]), where the authors use an anisotropic geometric 7

curvature flow. Besides the high dependency on suitable neighborhoods, which 8

the authors cannot compute directly, the proposed algorithm does not detect 9

features explicitly, but incorporates feature detection into an anisotropic Lapla- 10

cian. The more recent work [Sun et al.(2015)Sun, Schaefer and Wang] is based 11

on the idea of sparsity methods and includes L0 minimization. Originating from 12

image denoising, they set up an energy consisting of the 3D signal to be opti- 13

mized coupled with an L0 optimization applied to a differential operator on the 14

signal. 15

Processing of normals, point positions, and an edge-aware upsampling offers 16

the opportunity for an iterative application. In this setting, we are going to 17

compare our algorithm with that of [E. and A.(2016)], called “moving robust 18

principal component analysis” (MRPCA). The idea is – like the previous – 19

based on sparsity methods, which takes sparsity-algorithms and adapt them to 20

geometry processing problems. They perceive the point cloud as a collection of 21

overlapping two-dimensional subspaces and do not rely – in contrast to other 22

procedures – on oriented normals as input. The method is robust against outliers 23

and capable of denoising the point cloud while handling sharp features. 24

Recently, Zheng et al. ([Zheng et al.(2017a)Zheng, Li, Wu, Liu and Gao]) 25

proposed an extension of edge-aware image processing and mesh denoising to 26

point clouds. In their four-staged approach, feature candidates are detected, 27

employing a feature structure by the l1-medial skeleton, calculating and equip- 28

ping these with multiple normals, and selecting guiding normals by using kNN 29

patches with its normals being most consistent. In this terms, the algorithm 30

is even capable of high intensive noise while preserving important geometric 31

features.

Figure 1: The pipeline of the proposed algorithm. Our method consists of three
different stages, which are iterated until a desired output is produced.
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1.1.2 Surface Reconstruction with Feature Preservation1

One of the processes most affected by noise and outliers in a point set is2

that of surface reconstruction. A thorough introduction is given in the survey3

[Berger et al.(2017)Berger, Tagliasacchi, Seversky, Alliez, Guennebaud, Levine et al.].4

All following techniques aim at preserving features while simultaneously per-5

form denoising in the surface reconstruction process. In the context of local6

smoothness priors, the moving least squares (MLS) approach has a major im-7

pact. Developed in large parts by Levin [Levin(2003)], MLS underwent a lot of8

modifications. Guennebaud et al. [Guennebaud and Gross(2007)] modified the9

MLS idea by replacing the concept of finding well-defined tangent planes by fit-10

ting spheres as higher order approximations to the surface. This change makes11

the method more robust – especially in sparsely sampled regions, where a well12

defined tangent plane might not exist. Their method is denoted as “algebraic13

point set surfaces” (APSS) and will serve as comparison to our algorithm. The14

method of Öztireli et al. [Oztireli et al.(2009)Oztireli, Guennebaud and Gross]15

aims at overcoming the sensitivity of MLS to outliers and the effect of smoothing16

out small or sharp features. They combine MLS with local kernel regression to17

create a new implicit description of the surface, making it robust to noise, out-18

liers, and even sparse sampling. Their method of “robust implicit moving least19

squares” (RIMLS) will be the third algorithm we compare to. More recently,20

Chen et al. [Chen et al.(2013)Chen, Guennebaud, Barla and Granier] set their21

focus on a new MLS formalism using higher-order approximations – like APSS22

– incorporating discrete non-oriented gradient fields, yielding a continuous im-23

plicit representation.24

Turning to hierarchical partitioning, Ohtake et al. [Ohtake et al.(2003)Ohtake, Belyaev, Alexa, Turk and Seidel]25

propose “multi-level partitioning of unity implicits” (MPU). Their technique26

consists of an octree-based top-down structure, where points in a cell and nearby27

are approximated by either a bivariate quadratic polynomial or an algebraic28

trivariate quadric. An adjustment parameter for the level of smoothness guar-29

antees the handling of noise with respect to an error residual tolerance.30

Considering piecewise smooth priors and partition based methods, Fleish-31

man et al. [Fleishman et al.(2005)Fleishman, Cohen-Or and Silva] concentrate32

with their robust moving least squares (RMLS) on the handling of sharp fea-33

tures. They use the robust statistics tool of forward-search paradigm to choose34

small sets of points excluding outliers, continuing through the cloud, and evalu-35

ating observations monitored by statistical estimates. Wang et al. [Wang et al.(2013)Wang, Yu, Zhu and Cao]36

robustly compute a feature preserving normal field by mean-shift clustering and37

a least median of squares (LMS) regression scheme, providing local partitions,38

to which edge-preserving smoothing is applied by fitting multiple quadrics. Due39

to the locality, feature fragmentation at sharp edges may occur.40

Taking sparsity and neighboring normals into account, Avron et al. [Avron et al.(2010)Avron, Sharf, Greif and Cohen-Or]41

use global L1 optimization on these normals, observing that differences between42

them should be sparse, yet large values should reflect sharp features. Similar to43
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the approach in RIMLS, [Huang et al.(2013)Huang, Wu, Gong, Cohen-Or, Ascher and Zhang]1

suggests the edge-aware resampling (EAR) of the point cloud. This is a feature- 2

sensitive method under the guidance of the locally optimal projection (LOP) 3

([Lipman et al.(2007)Lipman, Cohen-Or, Levin and Tal-Ezer]) in a two-staged 4

approach, starting their robust smoothing and resampling process in regions 5

with similar normal distribution, while approaching the edges in terms of both 6

smoothing and resampling in a second step. 7

1.2 Contribution 8

On a noisy point set, it is a challenging task to decouple noise components and 9

sharp features, which is essential for a noise-free point set reconstruction. As 10

shown in Figure 1, our algorithm consists of three different stages, which are 11

iteratively applied until a satisfactory output has been computed. In the first 12

stage, which is vertex normal filtering, we extend the concept of face normal 13

processing of Yadav et al. [Yadav et al.(2017)Yadav, Reitebuch and Polthier] 14

to the more general setup of vertex normal processing. Although our ver- 15

tex normal processing is similar to the face normal processing of Yadav et 16

al. [Yadav et al.(2017)Yadav, Reitebuch and Polthier], we define a vertex-based 17

Normal Voting Tensor (NVT) based on the variation of vertex normals. In 18

terms of noise sensitivity, vertex normals are more sensitive compared to face 19

normals. Therefore, we modify the weighting scheme in the neighborhood se- 20

lection to make the algorithm robust against different levels of noise. Noise 21

and sharp features are decoupled using the spectral analysis of the vertex-based 22

NVT and noise components are suppressed using Binary Eigenvalues Optimiza- 23

tion (BEO). In the second stage, we introduce an anisotropic covariance matrix 24

using the filtered vertex normals to detect feature points (edges and corners) 25

robustly on the noisy input point set. In the last stage, we update the vertex 26

positions based on quadratic error metrics. A corresponding quadratic error 27

metric is used based on different feature points. The proposed vertex update 28

method helps the algorithm to preserve sharp features with minimum shrinkage 29

during the denoising process. 30

2 Method 31

Let us consider a nonuniform and noisy input point set V = {v0,v1, · · · ,vn−1} ⊂ R3
32

sampling a surface with n ∈ N denoting the number of vertices. We assume these 33

data points to be acquired e.g. by a 3D laser scanner and not to be equipped 34

with vertex normals. Thus, a first normal field on the vertices is computed fol- 35

lowing [Hoppe et al.(1992)Hoppe, DeRose, Duchamp, McDonald and Stuetzle], 36

which results in consistently oriented normals. Despite the fact, that there are 37

more recent works dealing with consistent normal fields on point sets, we decided 38

to use [Hoppe et al.(1992)Hoppe, DeRose, Duchamp, McDonald and Stuetzle], 39

as the implementation is simple and it works well with all the models we 40

used for our experiments. This is mostly due to the fact, that we process 41
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and smooth the normals further, so a consistent initial normal field is suffi-1

cient for our purposes. We denote the normal at vertex vi by ni and the2

normal field by N = {n0,n1, · · · ,nn−1} ⊂ R3. For a given vertex vi, we de-3

note by Ωi := {j ∈ N | vj ∈ V ∩Br(vi), i 6= j, j < n}, a set of indices of the4

geometric neighborhood of vertex vi, i.e. indices of all points from V that5

have distance less or equal r to vi, where r is a global parameter. We fa-6

vor a geometric neighborhood over a combinatorial k-nearest neighborhood as7

[Yadav et al.(2017)Yadav, Reitebuch and Polthier] found it to be more robust.8

In the following, we will denote by ·̃ those elements updated in one iteration,9

which will then serve as input to the next one.10

2.1 Vertex Normal Filtering11

This is the first of three iteratively applied steps of the proposed method. Here,12

noisy vertex normals are filtered and denoised using a vertex-based Normal13

Voting Tensor (NVT) and Binary Eigenvalues Optimization (BEO) similar to14

[Yadav et al.(2017)Yadav, Reitebuch and Polthier]. We describe both in the fol-15

lowing.16

2.1.1 Vertex-based Normal Voting Tensor (NVT)17

Covariance matrices compute the variance of an entity in a well defined domain.18

For example, consider a vertex vi and its nearest neighbors vj , j ∈ Ωi. The19

covariance matrix on the edges vj − vi of the nearest neighbor graph computes20

the variance of the vertex vi in R3. Similarly, the covariance matrix of vertex21

normals nj , j ∈ Ωi in a well defined neighborhood computes the anisotropic22

nature of a point set in that region. To analyze the anisotropic nature of a23

shape – in this case a point set surface – we define an object related to the24

covariance matrix, namely the vertex-based NVT, which is computed using the25

neighboring vertex normals:26

Ti =
1∑

j∈Ωi
wij

∑
j∈Ωi

wij nj ⊗ nj , (1)

where Ωi is the geometric neighborhood centered at vi and the symbol ⊗ rep-27

resents the outer product njn
T
j . The weights wij are computed based on the28

similarity between the neighbor normals. To define wij , we follow the local29

binary neighborhood concept, where the central vertex normal ni is compared30

to neighborhood vertex normals nj and assigns a binary value ωij ∈ {0, 1}31

according to the normal difference. Formally, we define the weight term wij as32

wij =

{
1 if ∠(ni,nj) ≤ ρ
0 if ∠(ni,nj) > ρ,

(2)

where ρ ∈ R>0 is given by the user and denotes a local binary neighbor-33

hood threshold, which is used to select vertices vj , j ∈ Ωi with similar nor-34

mals to ni. The weight term wij is not the exact weight function used in35
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[Yadav et al.(2017)Yadav, Reitebuch and Polthier] because vertex normals are 1

more sensitive to noise than face normals, for example at sharp features. There- 2

fore, a harder cut-off is necessary to maintain geometrical features while smooth- 3

ing the point set. Figure 2 shows a comparison between the proposed weighting 4

scheme (2), the bilateral weighting from [Yadav et al.(2018)Yadav, Reitebuch and Polthier],5

and the weighting function used in Yadav et al. [Yadav et al.(2017)Yadav, Reitebuch and Polthier].6

As it can be seen, the harder cut-off function is more effective in terms of feature 7

preservation than Yadav et al. [Yadav et al.(2017)Yadav, Reitebuch and Polthier] 8

or [Yadav et al.(2018)Yadav, Reitebuch and Polthier]. 9

The term Ti is a tensor. By construction, it is symmetric and positive 10

semidefinite and can be represented in terms of its spectral components: 11

Ti =
3∑
`=1

λi,` xi,` ⊗ xi,`, (3)

where λi,` and xi,` are the corresponding eigenvalues and eigenvectors. Let us
consider the eigenvalues to be sorted in decreasing order {λi,1 ≥ λi,2 ≥ λi,3 ≥ 0}.
Thus, we can rewrite Ti as:

Ti =(λi,1 − λi,2)xi,1 ⊗ xi,1 + (λi,2 − λi,3)(xi,1 ⊗ xi,1 + xi,2 ⊗ xi,2)

+ λi,3(xi,1 ⊗ xi,1 + xi,2 ⊗ xi,2 + xi,3 ⊗ xi,3).
(4)

Here, the first term of the right hand side is known as the stick tensor and 12

has only one dominant eigenvalue in the normal direction. The second term is 13

spanned by the two dominant eigenvectors, such that the normal direction is 14

defined in the direction of the least dominant eigenvector. This term is known 15

as the plate tensor. The third term is spanned by all eigenvectors and does not 16

have a well defined normal direction, cf. [Medioni(2000)]. From the above de- 17

scription, it is clear that the vertex-based NVT captures the anisotropic nature 18

of a point set and feature points can be easily detected using the eigenvalues of 19

Ti. That is, if there is only one dominant eigenvalue then it is a planar point, 20

if two eigenvalues are dominant then it is an edge, and if all eigenvalues are 21

equally dominant then it is a corner. 22

2.1.2 Binary Eigenvalues Optimization (BEO) 23

In our method, the vertex-based NVT is applied as a denoising operator on 24

a noisy point set. Furthermore, as we have discussed in the last section, the 25

vertex-based NVT is capable of detecting features on point sets as shown in 26

Figure 1 (third column). However, on a noisy point set, the behavior of the 27

spectral components of the vertex-based NVT will change. 28

Let us assume that a point set is corrupted by random noise with standard 29

deviation σn. Due to the presence of noise, the eigenvalues of the vertex-based 30

NVT will change. For example, on a planar area, one eigenvalue will remain 31

dominant, but the other two eigenvalues will be non-zero and proportional to σ. 32

Similarly, on an edge of the sampled geometry, the least dominant eigenvalue 33
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(a) σn = 0.25`a (b) wij as in
[Yadav et al.(2017)Yadav, Reitebuch and Polthier]

(c) Bilateral
[Yadav et al.(2018)Yadav, Reitebuch and Polthier]

(d) As in Eq. 2

Figure 2: A comparison between different weighting functions for neighborhood
selection. (a) The cube model is corrupted with a Gaussian noise (σn = 0.25`a)
in random directions, where la is the average distance between vertices of the
point set. (b) The output obtained by using the weighting function mentioned in
Yadav et al. [Yadav et al.(2017)Yadav, Reitebuch and Polthier]. (c) The out-
put obtained by using the bilateral weighting function (smooth functions) men-
tioned in Yadav et al. [Yadav et al.(2018)Yadav, Reitebuch and Polthier]. (d)
The output obtained by using the proposed weighting function of Equation (2).
Vertices of the cube are colored based on the variation of vertex normals. We
computed the scalar product between the normal of a random vertex and rest
of the vertex normals to show the level of denoising and feature preservation.

will be proportional to the applied noise, i.e. λi,3 ∝ σ. On a corner of the1

sampled geometry we expect λi,1, λi,2, λi,3 � σ. To remove these noise effects2

from the vertex-based NVT, the eigenvalues of Ti should be modified. That is,3

on a planar area and on an edge the least dominant eigenvalues should be zero4

and at a corner all eigenvalues should be equally dominant. In order to achieve5

this, we turn to binary optimization.6

The concept of binary eigenvalues optimization is applied to the eigenvalues7

of Ti, where each eigenvalue will be assigned a binary value λ̃i,` ∈ {0, 1} to re-8

move noise components effectively. Similar to [Yadav et al.(2017)Yadav, Reitebuch and Polthier],9

a threshold value τ ∈ R>0 is used for the BEO. The term τ is a global param-10

eter given by the user and should be chosen according to the noise intensity,11

i.e. τ ∝ σ, and to be smaller than the dominant eigenvalue(s). We will de-12

note by λ̃i,` the modified eigenvalues of the vertex-based NVT after BEO. The13

modification is based on feature classification:14

• At corners of the sampled geometry, when considering the point set, the
smallest eigenvalue should still be bigger than the threshold value, i.e.
λi,3 ≥ τ . Hence, we set:

λ̃i,` = 1, ` ∈ {1, 2, 3} if λi,3 ≥ τ.

• At edges of the sampled geometry, in the noisy point set, the least dom-
inant eigenvalue should be smaller than the threshold value, i.e. λi,3 < τ
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and λi,2 ≥ τ . Hence, we set:

λ̃i,1 = λ̃i,2 = 1, λ̃i,3 = 0 if λi,2 ≥ τ , λi,3 < τ.

• In the last case, we check for planar areas of the geometry. Having λi,2 < τ
and λi,3 < τ shows that the only dominant eigenvalue is λi,1. Hence, we
set:

λ̃i,1 = 1, λ̃i,2 = λ̃i,3 = 0 if λi,1 ≥ τ , λi,3,λi,2 < τ.

The BEO procedure presented here will remove the noise components from the 1

eigenvalues of the vertex-based NVT. 2

2.1.3 Vertex Normal Denoising 3

To remove noise components from the vertex normals, we project the noisy ver- 4

tex normals towards smooth normals by multiplication of the vertex-based NVT 5

to the corresponding vertex normal. By the preceding BEO, this multiplication 6

procedure will suppress noise in weak eigendirections and will strengthen vertex 7

normals in strong eigendirections. 8

Before multiplication, we have to recompute the modified vertex-based NVT 9

by using the same eigenvectors with the eigenvalues optimized in the BEO: 10

T̃i =

3∑
`=1

λ̃i,` xi,` ⊗ xi,`. (5)

To remove noise, we multiply the corresponding vertex normal with the modified 11

tensor T̃i. The multiplication will lead to noise removal while retaining sharp 12

features: 13

ñi = dni + T̃ini = dni +

3∑
`=1

λ̃i,`〈xi,`,ni〉xi,`, (6)

where d ∈ R>0 denotes a damping factor to control the denoising speed of the 14

vertex normals. We use d = 3 for all experiments. Finally, the updated normal 15

ñi is normalized. 16

2.2 Feature Detection 17

This is the second of three iteratively applied steps of the proposed method. 18

Here, we classify the point set into three different categories: corners, edges, 19

and planar points. This will be done using the spectral analysis of a weighted 20

covariance matrix. The idea to identify points and their features is substantiated 21

in the follow-up treatment of point position updates in the upcoming third 22

subsection where we use the notion of a quadratic error metric applied differently 23

to the occurring feature-assigned points. The weighted covariance matrix is 24

defined using filtered vertex normals, which makes the proposed algorithm more 25
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robust against feature points misclassification, which can lead to feature blurring1

artifacts.2

To detect feature points on a point set with filtered vertex normals, we3

consider the weighted covariance matrix:4

Ci =
1∑

j∈Ωi
w̃ij

∑
j∈Ωi

w̃ij(vj − v̄)⊗ (vj − v̄), (7)

where the weights w̃ij are similar to Equation (2), but are now utilizing the5

filtered vertex normals of Section 2.1. Formally, the terms v̄ and w̃ij are defined6

as:7

v̄ =
1∑

j∈Ωi
w̃ij

∑
j∈Ωi

w̃ijvj , w̃ij =

{
1 if ∠(ñi, ñj) ≤ ρ
0 if ∠(ñi, ñj) > ρ

. (8)

Similar to the vertex-based NVT, Ci is also a symmetric and positive semidef-8

inite matrix and can be represented in terms of its spectral components:9

Ci =

3∑
`=1

µi,` yi,` ⊗ yi,`, (9)

where µ` and y` are the corresponding eigenvalues and eigenvectors. Let us con-10

sider the eigenvalues to be sorted in decreasing order {µi,1 ≥ µi,2 ≥ µi,3 ≥ 0}.11

In the proposed method, they are used to classify the points as follows, utilizing12

the same threshold parameter τ as in Section 2.1.2:13

• On a planar area, there will be two dominant eigenvalues and their cor-
responding eigenvectors should be spanning the tangent plane. The least
dominant eigenvalue will be smaller than the feature threshold τ . There-
fore, we classify planar points as

Vf = {vi ∈ V | µi,1, µi,2 ≥ τ, µi,3 < τ}.

• On an edge, there will be one dominant eigenvalue and the corresponding
eigenvector aligns with the edge direction. Therefore, we classify edge
points as

Ve = {vi ∈ V | µi,1 ≥ τ, µi,2, µi,3 < τ}.

• Finally, on a corner, either all eigenvalues are dominant or none of them
is significant. Therefore, corner points are set to

Vc = {vi ∈ V | (µi,1, µi,2, µi,3 ≥ τ) ∨ (µi,1, µi,2, µi,3 < τ)}.

Points at a corner, an edge, and planar points are represented in the following14

by Vc = {vc· }, Ve = {ve· }, and Vf = {vf· } respectively, such that we obtain the15

following disjoint union V = Vc tVe tVf .16
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2.3 Constraint-based Vertex Position Update 1

In this final of three iteratively applied steps of the proposed method, we update 2

the vertex positions. This is done utilizing distance-based constraints, where the 3

resulting updated point set remains within a prescribed distance to the input 4

noisy point set. To compute the optimal position of a vertex w.r.t. the smoothed 5

vertex normal, restricted quadratic error metrics are used in this algorithm, 6

inspired by the work of [Garland and Heckbert(1997)]. The restriction to the 7

quadratic error metric is introduced based on the different feature points and 8

the vertex position is updated utilizing distance-based constraints. 9

We allow the user to provide a parameter ε ∈ R>0 bounding the maximum 10

deviation di between an initial noisy point and its corresponding iteratively 11

updated point ṽi. 12

2.3.1 Vertex Update at Corners 13

Let us consider a point vci ∈ Vc, labeled as corner point in Section 2.2. We will 14

find its updated position ṽci by minimizing the following energy function: 15

min
ṽc
i

∑
j∈Ωi

‖ñj · (ṽci − vj)‖2. (10)

Each of the neighboring vertices vj is equipped with a corresponding filtered 16

normal direction ñj . Thus, we can associate a plane based at each neighboring 17

vertex given by the normal direction. In an ideal case, these planes would all 18

meet in a point – the exact position of the vertex vi. But as noise is present 19

and the planes will in general not intersect in a point, we define the error of the 20

vertex ṽci as the sum of squared distances to these planes. 21

Note that we do not weight the neighbors in Equation (10), but take all 22

j ∈ Ωi into account equally. That is because we rely on the highly unstable 23

intersection of multiple planes in R3. The more we take into account, the more 24

likely it is for them to even out noise effects and give a faithful reconstruction 25

of the corner. 26

Minimizing Equation (10) boils down to solving a linear system and the new
position can be computed directly, which will be given by the following equation:

tci =

( ∑
j∈Ωi

ñj ⊗ ñj

)−1 ∑
j∈Ωi

(
ñj ⊗ ñjvj

)
,

where tci is a temporary vertex position. Before updating the position of vci 27

to ṽci , we compute the deviation di between tci and the corresponding original 28

vertex from the noisy point set. If di is within the user-prescribed limit ε we 29

move this corner point to tci , otherwise we don’t move this point: 30

ṽci =

{
tci if di ≤ ε
vci if di > ε

, (11)
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(a) (b)

Figure 3: A visual representation of the vertex update scheme at edges. Figure
(a) shows the plane Hi, which is defined by y1 for edge vertex vei . Neighbor
vertices of vei and corresponding vertex normals are projected onto this plane
as shown in Figure (b).

where ε is the aforementioned user input which limits the deviation between the1

original noisy and updated corner points. By the above equation, corner points2

are moved at most ε during their position update in the direction of a minimum3

distance to all neighboring planes spanned by the respective normals.4

2.3.2 Vertex Update at Edges5

Let us consider a point vei ∈ Ve, labeled as edge point in Section 2.2. Here, the
weighted covariance matrix Ci has only one dominant eigenvalue µi,1 and the
corresponding eigenvector yi,1 aligns with the edge direction. We define a plane

Hi = {x ∈ R3 | 〈yi,1, x〉 = 〈yi,1,vei 〉}.

As shown in Figure 3, we project all neighborhood vertices vj , j ∈ Ωi and their
respective vertex normals ñj to Hi, denoting the corresponding projections by
vπj and ñπj :

vπj =vj − 〈(vj − vei ),yi,1〉yi,1,
ñπj =ñj − 〈ñj ,yi,1〉yi,1.

Now, we define a quadratic energy function similar to Equation (10):6

min
ṽe
i

∑
j∈Ωi

(
‖ñπj · (ṽei − vπj )‖2 +

1

|Ωi|
‖yi,1 · (ṽei − vπj )‖2

)
. (12)

The above energy function is defined on the plane Hi. In comparison to
Equation (10), we include an additional summand. This is necessary, because
the matrix of the linear system resulting from Equation (12) without the sum-
mand would not be invertible. The reason is, that the least dominant eigenvalue

12



along the normal being zero would reduce the rank of the corresponding ma-
trix. We choose this additional summand which is directed along the edge to
create an orthonormal basis as the plane Hi is spanned using the other two
eigenvectors of the weighted covariance matrix Ci. Including the summand, we
can minimize Equation (12) once more by solving a linear system which results
in the equation:

tei =

( ∑
j∈Ωi

ñπj ⊗ ñπj + yi,1 ⊗ yi,1

)−1 ∑
j∈Ωi

(
ñπj ⊗ ñπj vj + yi,1 ⊗ yi,1v

e
i

)
,

where the summand y1⊗y1 ensures that the matrix is invertible. The term tei is 1

a temporary vertex position and we once more compute the deviation between 2

tei and the corresponding original vertex from the noisy point set to modify the 3

edge vertex accordingly: 4

ṽei =

{
tei if di ≤ ε
vei if di > ε

. (13)

For each edge vertex, the above equation computes the optimal position by 5

minimizing the distance between the lines, which are defined by the projected 6

vertex normals. This operation effectively preserves sharp features along edges 7

and removes noise effectively. 8

(a) (b)

Figure 4: This figure shows the effect of the proposed constraint-based vertex
position update scheme: Figure (a) represents the point set reconstructed by
using Equation (14) not only for flat regions but also for feature points. Figure
(b) represents the result obtained by the proposed scheme, where flat regions
follow Equation (14), edges are reconstructed using Equation (13) and corner
positions are updated using Equation (11). Note how the corner itself is not
recovered in (a), but is recovered in (b).
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2.3.3 Vertex Update on Flat Regions1

Let us consider a point vfi ∈ Vf , labeled as point within a planar area by2

Section 2.2. In this flat region, the matrix Ci has two dominant eigenval-3

ues. In order to remove noise in these regions, we allow to move the vertex4

position only in direction of the corresponding vertex normal ñi. Thereby,5

we follow the approach of [Sun et al.(2007a)Sun, Rosin, Martin and Langbein,6

Zheng et al.(2017b)Zheng, Li, Wu, Liu and Gao]. We use an energy function7

similar to that of Equation (10), but with the restriction to only move in nor-8

mal direction. Similar to edge and corner vertex updates, we first compute the9

deviation di and then update the vertex position according to10

ṽfi =

vfi + α∑
j∈Ωi

Wij

∑
j∈Ωi

Wij〈ñj ,vj − vfi 〉ñi if di ≤ ε

vfi if di > ε

, (14)

where α is a user-controlled parameter to limit the amount of smoothing on flat11

regions and Wij is a combination of a similarity and a closeness function:12

Wij = exp
(
− 16|ñi − ñj |2

δ2

)
· exp

(
− 4|vj − vfi |

2

δ2

)
, (15)

where δ is half the diameter of the point set Ωi.13

Even though the update scheme for flat regions as given in Equation (14)14

seems most elaborate, the combination with simpler schemes for both cor-15

ners (11) and edges (13) is more effective in practice, as shown in Figure 4.16

2.4 Method Summary17

In the previous Sections 2.1, 2.2, and 2.3, we have presented the three key steps18

of our smoothing method. By iteratively applying these three steps to a noisy19

point set input, the proposed algorithm produces a noise-free point set with20

proper sharp features.21

3 Experiments, Results and Discussion22

We evaluated the capacity of our algorithm on various kinds of point set models23

corrupted with synthetic noise (Figures 5, 6, 9, 10, 12) and real scanned data24

(Figures 13, 14). We compared our method with five state-of-the-art denoising25

Methods [E. and A.(2016)], [Zheng et al.(2017a)Zheng, Li, Wu, Liu and Gao],26

[Guennebaud and Gross(2007)], [Oztireli et al.(2009)Oztireli, Guennebaud and Gross],27

and [Zheng et al.(2018)Zheng, Li, Xu, Wu and Nie]. Methods [Guennebaud and Gross(2007)]28

and [Oztireli et al.(2009)Oztireli, Guennebaud and Gross] are implemented in29

MeshLab. The results of Methods [E. and A.(2016)], [Zheng et al.(2017a)Zheng, Li, Wu, Liu and Gao],30

and [Zheng et al.(2018)Zheng, Li, Xu, Wu and Nie] are provided by the authors.31

32
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(a) σn = 0.13la (b) σn = 0.25la (c) σn = 0.35la (d) σn = 0.5la

Figure 5: A visual representation of feature preservation analysis. The Cube
is corrupted with different levels of noise (σn = 0.13la, 0.25la, 0.35la, 0.5la) in
random direction. To measure the feature preservation capability of the pro-
posed algorithm, we computed MAD (mean angular deviation) and from Figure
(a)-(d) MAD are 2.99, 4.15, 6.4 and 6.48. Vertices are colored based on the vari-
ation of vertex normals. We computed the scalar product between the normal
of a random vertex and rest of the vertex normals to show the level of denoising.

3.1 Parameters Tuning 1

We introduced several parameters: geometric neighbor radius r, dihedral an- 2

gle threshold ρ (Equation (2)), eigenvalue threshold τ (Section 2.1.2), damp- 3

ing factor d (Equation (6)), distance-based constraint ε (Equations (11), (13), 4

(14)), total number of iterations p, and vertex-diffusion speed α (Equation (14)). 5

Throughout the whole experimentation, we fixed α = 0.1 and d = 3. The radius 6

r of the geometric neighborhood depends on the resolution of the input point 7

set and it is fixed to be twice the average distance la between the vertices of the 8

point set. The average distance between the vertices is computed using 6 nearest 9

neighbors of each vertex. In this paper, we also fix the distance-based constraint 10

ε = 2r for the experimentation purpose (except Figure 7). Effectively, there are 11

only 3 parameters (τ, ρ, p) to tune the results. In the quantitative comparison, 12

see Table 1, the parameters are mentioned in the following format: (τ, ρ, p). For 13

Methods [E. and A.(2016)], [Zheng et al.(2017a)Zheng, Li, Wu, Liu and Gao], 14

and [Zheng et al.(2018)Zheng, Li, Xu, Wu and Nie], we mention “Default” in 15

the parameter column because the corresponding smooth models are provided by 16

their authors. For the method [Guennebaud and Gross(2007)], we used the pa- 17

rameters (h, #{iterations}, α), and for [Oztireli et al.(2009)Oztireli, Guennebaud and Gross],18

we used (σr, σn), both listed in Table 1. 19

The eigenvalue threshold τ depends on the noise intensity on a point set. The 20

bigger the noise intensity, the larger the value of τ should be chosen. We use τ ∈ 21

{0.25, . . . , 0.4} for synthetic data and τ ∈ {0.05, . . . , 0.1} for real data because 22

in our experiment real data point sets have smaller noise intensity compared to 23

synthetic data point sets. We iterate several times (p ∈ {20, . . . , 100}) for best 24

15



(a) σn = 0.13la (b) σn = 0.25la (c) σn = 0.35la (d) σn = 0.5la

Figure 6: Shrinkage analysis during the denoising process. The Sphere model
is corrupted with different levels of noise (σn = 0.13la, 0.25la, 0.35la, 0.5la) in
random direction. An average of the L2-norm of each vertex is computed to show
a shrinkage effect in the proposed method. From Figure (a)-(d) the L2-norms
are 0.984, 0.983, 0.982 and 0.9811. Vertices are colored based on the variation
of vertex normals. We computed the scalar product between the normal of a
random vertex and rest of the vertex normals to show the level of denoising.

results. The term ρ ∈ {0.8, . . . , 0.95} is the threshold to select the neighbor1

components and it is computed using the scalar product between the neighbor2

vertex normals. On a CAD model, we choose a high threshold value because of3

sharp features and on CAGD models, we choose a small threshold value because4

of smoother features compared to CAD models. The distance-based constraint5

ε is one of the most important parameter in the proposed algorithm. The effect6

of this parameter is shown in Figure 7. As it can be seen, a small value of ε7

leads to less shrinkage (small Ev) but does not remove all noise components.8

3.2 Quantitative Analysis9

We performed several experiments regarding the quantitative analysis of the10

proposed algorithm. In general, shrinkage and feature blurring are two main11

challenges during the denoising process. In this section, we show the behavior12

of the proposed algorithm against different levels of noise in terms of shrinkage13

and feature preservation.14

To quantify shrinkage, we performed the denoising process with a unit Sphere15

and computed the L2-norm of each vertex using the following equation:16

Ev =
1

n

n−1∑
i=0

‖vi‖2. (16)

For the original Sphere Ev = 1.0 and due to shrinkage effect the value of Ev17

decreases. As shown in Figure 6, the shrinkage effect increases with noise in-18

tensity but at the same time these changes are not significant. The value of Ev19
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(a) σn = 0.25la (b) ε = 2la (c) ε = la (d) ε = la, sur-
face

Figure 7: Effect of the distance-based constraint ε. Figure (a) shows a sphere,
which is corrupted by Gaussian noise in random direction with standard devi-
ation σn = 0.25la and la is the average distance between vertices of the point
set. Figure (b) represents a desirable noise-free output with ε = 2la and when
ε = la, the proposed method is not able to remove all noise components. The
L2-norms are 0.984 and 0.981 for Figure (b) and (c) respectively. Vertices are
colored based on the variation of vertex normals. We computed the scalar prod-
uct between the normal of a random vertex and rest of the vertex normals to
show the level of denoising.

(a) MAD (b) Ev

Figure 8: A visual representation of the convergence of the proposed algo-
rithm. Figure (a) shows the orientation error convergence on a Cube model
(σn = 0.13la) and Figure (b) demonstrates the L2-norm variation with itera-
tions on a noisy Sphere (σn = 0.25la).

also depends on the distance-based constraint ε. As shown in Figure 7, with a 1

bigger value of ε, it is possible that Ev will be bigger but at the same time it 2

gives a smoother result compared to a small value of ε. 3

For further shrinkage analysis, we reconstructed triangulated surfaces using
the “ball pivoting” algorithm [Bernardini et al.(1999)Bernardini, Mittleman, Rushmeier, Silva and Taubin]
(Figure 9-12). To compute the closeness between the ground truth model and
the denoised model, we use an L2 vertex-based error metric, which is defined as
in [Sun et al.(2007b)Sun, Rosin, Martin and Langbein]:

Dv =

√√√√ 1

3
∑
k∈F ak

∑
i∈V

∑
j∈Fv(i)

ajdist(ṽi, T )
2

where F and V are treated as the triangular element set and the set of vertices 4
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(a) Original (b) Noisy (c)
APSS[Guennebaud and Gross(2007)]

(d) RIMLS
[Oztireli et al.(2009)Oztireli, Guennebaud and Gross]

(e) MRPCA
[E. and A.(2016)]

(f) GN
[Zheng et al.(2017a)Zheng, Li, Wu, Liu and Gao]

(g) RN
[Zheng et al.(2018)Zheng, Li, Xu, Wu and Nie]

(h) Ours

Figure 9: The Fan disk model corrupted by Gaussian noise (σ =
0.28le), where le is the average distance between the vertices of
the model. It can be seen that the proposed method is able to
preserve sharp features effectively compared to state-of-the-art meth-
ods. Surfaces are reconstructed using the “ball pivoting” algorithm
[Bernardini et al.(1999)Bernardini, Mittleman, Rushmeier, Silva and Taubin].

respectively after the triangulated surface reconstruction. The terms ak and1

aj are the corresponding face areas. The distance dist(ṽi, T ) is the closest2

L2-distance between the newly computed vertex ṽi and the triangle T of the3

reference model.4

Table 1: Quantitative Comparison5

6
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(a) Original (b) Noisy (c) APSS
[Guennebaud and Gross(2007)]

(d) RIMLS
[Oztireli et al.(2009)Oztireli, Guennebaud and Gross]

(e) MRPCA
[E. and A.(2016)]

(f) GN
[Zheng et al.(2017a)Zheng, Li, Wu, Liu and Gao]

(g) RN
[Zheng et al.(2018)Zheng, Li, Xu, Wu and Nie]

(h) Ours

Figure 10: The Cube model with non-uniform distribution of ver-
tices, corrupted by Gaussian noise (σn = 0.3le), where le is the av-
erage distance between the vertices of the model. It can be seen
that the proposed method is able to preserve sharp features effectively
compared to state-of-the-art methods and does not create bumpy struc-
tures. Surfaces are reconstructed using the “ball pivoting” algorithm
[Bernardini et al.(1999)Bernardini, Mittleman, Rushmeier, Silva and Taubin].

Models Methods MAD Dv × 10−3 Parameters
[Guennebaud and Gross(2007)] 5.56 3.24 (2, 45, 0.5)

[Oztireli et al.(2009)Oztireli, Guennebaud and Gross] 4.62 5.41 (4, 0.75)
Cube [E. and A.(2016)] 4.60 3.37 Default

|V | = 1906 [Zheng et al.(2017a)Zheng, Li, Wu, Liu and Gao] 3.48 7.51 Default
Figure 10 [Zheng et al.(2018)Zheng, Li, Xu, Wu and Nie] 4.47 6.46 Default

Ours 2.85 1.65 (0.3, 0.95, 150)
[Guennebaud and Gross(2007)] 5.13 22.6 (4, 15, 0.5)

Rocker arm [Oztireli et al.(2009)Oztireli, Guennebaud and Gross] 5.26 21.4 (4, 1)
|V | = 24106 [E. and A.(2016)] 6.31 33.0 Default
Figure 11 [Zheng et al.(2017a)Zheng, Li, Wu, Liu and Gao] 8.14 118.7 Default

[Zheng et al.(2018)Zheng, Li, Xu, Wu and Nie] 6.26 72.12 Default
Ours 7.56 43.26 (0.25, 0.9, 80)

[Guennebaud and Gross(2007)] 3.72 1.7 (4, 15, 0)
Fan disk [Oztireli et al.(2009)Oztireli, Guennebaud and Gross] 6.6 1.81 (4, 0.75)

|V | = 25894 [E. and A.(2016)] 13.67 1.56 Default
Figure 9 [Zheng et al.(2017a)Zheng, Li, Wu, Liu and Gao] 4.57 1.81 Default

[Zheng et al.(2018)Zheng, Li, Xu, Wu and Nie] 4.34 1.4 Default
Ours 4.4 1.39 (0.3, 0.9, 150)

[Guennebaud and Gross(2007)] 3.35 0.27 (2, 45, 0.5)
Octahedron [Oztireli et al.(2009)Oztireli, Guennebaud and Gross] 4.31 0.39 (4, 0.75)
|V | = 40242 [E. and A.(2016)] 4.6 0.32 Default
Figure 12 [Zheng et al.(2017a)Zheng, Li, Wu, Liu and Gao] 1.2 0.52 Default

[Zheng et al.(2018)Zheng, Li, Xu, Wu and Nie] 1.37 0.49 Default
Ours 1.11 0.19 (0.25, 0.9, 80)

1
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To quantify feature preservation, we check the orientation error between the1

denoised model and the ground truth. Mean angular deviation (MAD) is defined2

to measure the orientation error:3

MAD =
1

n

n−1∑
i=0

∠(n̄i, ñi), (17)

where n̄i and ñi are vertex normals of the ground truth model and the denoised4

model respectively. Figure 5 shows that MAD is large when noise intensity is5

high. So with bigger noise, the orientation error will be bigger compared to6

lower noise. As it can be seen from Figure 5, for σn = 0.13la to σn = 0.35la, the7

output models are noise-free with sharp features. However, with σn = 0.5la, we8

are not able to preserve all sharp features.9

Table 1 shows the comparison of the proposed method with five state-of-10

the-art methods. As it can be seen, for the Cube model, our method not only11

reconstructs sharp features (low MAD) but also produces minimum shrinkage12

(low Dv) compared to the current state-of-the-art methods. For the Rocker arm13

model, the proposed method is not as good as APSS [Guennebaud and Gross(2007)]14

and RIMLS [Oztireli et al.(2009)Oztireli, Guennebaud and Gross] methods in15

terms of MAD and Dv. However, Figure 11 shows that our method produces16

smoother umbilical regions with enhanced sharp features. For the Fan disk17

model, the proposed algorithm performs better compared to state-of-the-art18

methods in terms of feature preservation. However, it produces more volume19

shrinkage compared to APSS [Guennebaud and Gross(2007)]. Similar to the20

Cube model, our algorithm outperforms state-of-the-art methods in terms of21

feature preservation and volume shrinkage.22

Figure 8 shows the convergence property of the proposed algorithm. Fig-23

ure 8(a) shows the orientation error with a noisy Cube model and it is almost24

constant after 100 iterations. As it can be seen from the figure, the proposed25

method has better convergence rate compared to RIMLS [Oztireli et al.(2009)Oztireli, Guennebaud and Gross].26

Our method has improved convergence rate because of the BEO (binary eigen-27

values optimization), which assigns binary values to the eigenvalues of the28

vertex-based NVT. By assigning zero to the least dominant eigenvalue, our29

algorithm removes noise components faster compared to state-of-the-art meth-30

ods. Similarly, Figure 8(b) shows the variation of Ev w.r.t. iterations. As31

the number of iterations increases, the value of Ev decreases, which leads to32

shrinkage effect. In the proposed method, the shrinkage effect is controlled us-33

ing the distance-based constraint ε. As it can be seen from Figure 8, the value34

of Ev is almost constant after 400 iterations because the value of ε is set to35

approximately twice of the point set resolution.36

3.3 Visual Comparison with State-of-the-art Methods37

For visual comparison, we reconstruct triangulated meshes using the “ball pivot-38

ing” algorithm [Bernardini et al.(1999)Bernardini, Mittleman, Rushmeier, Silva and Taubin]39

after the point set denoising. Fan disk (Figure 9) and Cube (Figure 10) mod-40
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els have non-uniform vertices corrupted with Gaussian noise in random direc- 1

tions. Figure 10 shows that the proposed method produces a noise-free model 2

with sharp features without creating any false and bumpy features like APSS 3

[Guennebaud and Gross(2007)] and RIMLS [Oztireli et al.(2009)Oztireli, Guennebaud and Gross]4

methods. MRPCA [E. and A.(2016)], GN (guided normals) [Zheng et al.(2017a)Zheng, Li, Wu, Liu and Gao],5

and RN (rolling normals) [Zheng et al.(2018)Zheng, Li, Xu, Wu and Nie] re- 6

move noise effectively from flat regions but edges and corners are not recon- 7

structed properly. Similarly, Figure 9 shows that our method reconstructs not 8

only sharp features, but also shallow features (around flat regions). APSS and 9

RIMLS preserve different levels of features also but do not remove noise com- 10

ponents effectively. MRPCA removes noise effectively but does not reconstruct 11

shallow features. Visually, GN and RN produce an output which is quite similar 12

to the proposed algorithm. However, our method produces better quantitative 13

measures compared to GN and RN. The Rocker arm model (Figure 11) has 14

a considerably non-uniform mesh and our method better enhances sharp fea- 15

tures (around cylindrical regions) and removes noise more effectively compared 16

to state-of-the-art methods. In terms of quantitative analysis, APSS (lowest 17

MAD) and RIMLS (lowest Dv) are better compared to the proposed method. 18

Figure 12 shows the capability of the proposed method to produce better corners 19

and edges compared to MRPCA, APSS, and RIMLS and the results obtained 20

by GN and RN methods look quite similar to the proposed method. 21

For real data, Figure 13 shows that our method removes noise effectively 22

while retaining features on the surface compared to [Guennebaud and Gross(2007)] 23

and [Oztireli et al.(2009)Oztireli, Guennebaud and Gross]. RN smooths out fine 24

levels of features. GN and the proposed method produce quite similar results. 25

Similarly, Figure 14 represents the applicability of the proposed method in med- 26

ical data analysis. As it can be seen from the figure, our method removes noise 27

effectively from the spherical regions and retains sharp features in the cylindri- 28

cal regions. Guennebaud et al. [Guennebaud and Gross(2007)] and Öztireli et 29

al. [Oztireli et al.(2009)Oztireli, Guennebaud and Gross] are not able to remove 30

the noise components properly. MRPCA, GN, and RN remove noise components 31

effectively. However, these methods blur the sharp features in the cylindrical 32

region. 33

Figure 15 shows the robustness of the proposed method against irregular 34

sampling of data points. The Gargoyle model is scanned by a laser scanner and 35

has a highly irregular sampling. As it can be seen from the figure, our method 36

produces a noise-free point set of the Gargoyle model without blurring different 37

levels of features. 38

4 Conclusion 39

In this paper, we presented a simple and effective tensor multiplication algorithm 40

for feature-preserving point set denoising. The proposed method is basically an 41

extension of the ENVT-based mesh denoising [Yadav et al.(2017)Yadav, Reitebuch and Polthier].42

Similar to the concept of the ENVT, in the proposed algorithm, we used vertex- 43
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based NVT and the spectral analysis of this tensor leads to decoupling of fea-1

tures from noise. Noise components are removed by the multiplication of the2

vertex-based NVT to the corresponding vertex normal. The concept of binary3

eigenvalues optimization not only enhances sharp features but also improves the4

convergence rate of the method. Local binary neighborhood selection helps to5

select similar vertices in the neighborhood to compute the vertex-based NVT6

to avoid feature blurring during the denoising process. After the vertex normal7

filtering, we classify feature points into edges, corners and flat regions using8

an anisotropic covariance matrix. For the vertex update stage, we introduced9

restricted least square error metrics, which are different for different kinds of10

features. The vertex position reconstruction using restricted quadratic error11

metrics helps the algorithm to recreate the sharp edges and corners. The ex-12

perimental results show the effectiveness of the proposed algorithm.13

Our method is capable of handling noise, but yields erroneous results under14

high noise intensities. This is based on the fact, that noise has a great impact on15

the normal estimation and the NVT construction, and we use them throughout16

the whole process. Another issue arises when the input point set is highly17

irregular. As we have shown in Figure 15, our method is robust up to a moderate18

level of irregularity but it is possible that with extreme irregular sampling, the19

output may not be satisfactory.20

During the denoising process, we tuned the different parameters manually to21

get the desired results. we need to find an optimal combination of the parameters22

automatically. A direction we are going to investigate in the future.23
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(a) Original (b) Noisy (c) APSS
[Guennebaud and Gross(2007)]

(d) RIMLS
[Oztireli et al.(2009)Oztireli, Guennebaud and Gross]

(e) MRPCA
[E. and A.(2016)]

(f) GN
[Zheng et al.(2017a)Zheng, Li, Wu, Liu and Gao]

(g) RN
[Zheng et al.(2018)Zheng, Li, Xu, Wu and Nie]

(h) Ours

Figure 11: The Rocker arm model corrupted by Gaussian noise ((σn =
0.3le) in normal direction. The results are produced by state-of-the-
art methods and our proposed method. The proposed method removes
noise effectively and also enhances the sharp features around the cylindri-
cal region. Surfaces are reconstructed using the “ball pivoting” algorithm
[Bernardini et al.(1999)Bernardini, Mittleman, Rushmeier, Silva and Taubin].
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(a) Original (b) APSS
[Guennebaud and Gross(2007)]

(c) RIMLS
[Oztireli et al.(2009)Oztireli, Guennebaud and Gross]

(d) MRPCA
[E. and A.(2016)]

(e) GN
[Zheng et al.(2017a)Zheng, Li, Wu, Liu and Gao]

(f) RN
[Zheng et al.(2018)Zheng, Li, Xu, Wu and Nie]

(g) Ours

Figure 12: The Octahedron model, which is corrupted by Gaussian
noise and results produced by the proposed method and state-of-the-art
methods. Surfaces are reconstructed using the “ball pivoting” algorithm
[Bernardini et al.(1999)Bernardini, Mittleman, Rushmeier, Silva and Taubin].

(a) Original (b) APSS
[Guennebaud and Gross(2007)]

(c) RIMLS
[Oztireli et al.(2009)Oztireli, Guennebaud and Gross]

(d) MRPCA
[E. and A.(2016)]

(e) GN
[Zheng et al.(2017a)Zheng, Li, Wu, Liu and Gao]

(f) RN
[Zheng et al.(2018)Zheng, Li, Xu, Wu and Nie]

(g) Ours

Figure 13: Real data of the Rabbit model, acquired by a 3D scan-
ner and results produced by the proposed method and state-of-the-art
methods. Surfaces are reconstructed using the “ball pivoting” algorithm
[Bernardini et al.(1999)Bernardini, Mittleman, Rushmeier, Silva and Taubin].
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(a) Original (b)
APSS[Guennebaud and Gross(2007)]

(c) RIMLS
[Oztireli et al.(2009)Oztireli, Guennebaud and Gross]

(d) MRPCA
[E. and A.(2016)]

(e) GN
[Zheng et al.(2017a)Zheng, Li, Wu, Liu and Gao]

(f) RN
[Zheng et al.(2018)Zheng, Li, Xu, Wu and Nie]

(g) Ours

Figure 14: The Ball joint model – which is corrupted by scanner noise
– and results produced by the proposed method and state-of-the-art meth-
ods. Surfaces are reconstructed using the “ball pivoting” algorithm
[Bernardini et al.(1999)Bernardini, Mittleman, Rushmeier, Silva and Taubin].

(a) Noisy irregular real data (b) Our result

Figure 15: Robustness against irregular data points. Figure (a) shows the noisy
irregular data points of the Gargoyle model and Figure (b) shows the result
obtained by the proposed method.
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